
Chapter 1

Online learning of a weighted selective
naive Bayes classi�er with non-convex
optimization

C. Hue, M. Boullé, V. Lemaire

Abstract We study supervised classi�cation for data streams with a high
number of input variables. The basic naïve Bayes classi�er is attractive
for its simplicity and performance when the strong assumption of condi-
tional independence is valid. Variables selection and models averaging are
two common ways to improve this model. This process leads to manipu-
late a weighted naïve Bayes classi�er. We focus here on direct estimation
of weighted naïve Bayes classi�ers. We propose a sparse regularization of
the model log-likelihood which takes into account the information contained
in each input variable. The sparse regularized likelihood being non convex,
we propose an online gradient algorithm using mini-batches and a post-
optimization to avoid local minima. In our experiments we �rst study �rst
the optimization quality, then the classi�er performance according to its pa-
rameterization. These results con�rm the e�ectiveness of our approach.

Key words: supervised classi�cation, naïve Bayes classi�er, non-convex op-
timization, stochastic optimization, variables selection, sparse regularisation

1.1 Introduction

Due to a continuous increase of storage capacities, data acquisition and pro-
cessing have deeply evolved during these last decades. Henceforth, it is com-
mon to process data including a very large number of variables and data
amount are such massive that it hardly seems possible to fully load them :
online processing is then applied and data are only seen once. In this context,
we consider the supervised classi�cation problem where Y is a target cate-
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gorical variable with J modalities C1, . . . , CJ and X = (X1, . . . , XK) is the
set of K explicative variables, numerical or categorical. We focus on naïve
Bayes classi�ers family. The explicative variables are assumed to be indepen-
dent conditionally to the target variable. This "naïve" assumption allows us
to compute the model directly from the univariate conditional estimates. For
an instance denoted n, the probability of the target modality C conditionally
to the explicative variables values is computed according to the formulae :

Pw(Y = C|X = xn) =
P (Y = C)

∏K
k=1 p(x

n
k |C)wk∑J

j=1 P (Cj)
∏K
k=1 p(x

n
k |Cj)wk

(1.1)

We consider here that estimates of prior probabilities P (Y = Cj) and of
conditional probabilities p(xk|Cj) are available. In our experiments, these
probabilities will be estimated using univariate discretization or grouping
according to the MODL method (cf. [Boullé, 2007]). The univariate proba-
bilities being given, a weighted naïve Bayes classi�er is completely described
by its variable weight vector W = (w1, w2, . . . , wK). Within this classi�ers
family, we can distinguish :

- classi�ers with boolean weights. By browsing through all the possible val-
ues for the weight vector, we can compute the MAP classi�er, i.e. the
classi�er which maximizes the training data conditional likelihood. How-
ever, when the variables number is high, such a browsing is infeasible and
only a sub-optimal browsing of the space {0, 1}K can be completed.

- classi�ers with continuous weights in [0, 1]K . Such classi�ers can be ob-
tained by averaging classi�ers with boolean weights with a weighting pro-
portionnal to the posterior probability of the model [Hoeting et al., 1999]
or proportionally to their compression rate [Boullé, 2007]. However, for
databases with a very high number of variables, we observe that the mod-
els issued from averaging keep a lot of variables that make the obtained
classi�ers both costly to deploy and di�cult to interpret.

In this present work, we are interested in direct estimation of the weight vector
by optimisation in [0, 1]K of the regularized log-likelihood. Our main expecta-
tion is to obtain by this way robust models with less variables and equivalent
performance. Preliminary works [Guigourès and Boullé, 2011] have shown
the interest of such a direct weights estimation. The remainder of this paper
is organized as follows : in section 1.2 we present a sparse regularization and
in section 1.3 the set up of an online algorithm, anytime and with limited
budget dedicated to the optimization of the regularized criterion. Experi-
ments are presented in section 1.4, before the conclusion and future works
statement.
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1.2 Construction of a regularized criterion

Given a dataset DN = (xn, yn)
N
n=1, we are looking for the minimization of

the negative log-likelihood which is given by :

ll(w,DN ) = −
N∑

n=1

logP (Y = yn) +

K∑
k=1

log p(xnk |y
n)wk − log

 J∑
j=1

P (Cj)

K∏
k=1

p(xnk |Cj)
wk


(1.2)

Considered as a classical optimization problem, the regularization of the
log-likelihood is performed by the addition of a regularization term (or prior
term) which express constraints we wish force on the weight vector W . The
regularized criterion is of the form :

CRDN (w) = −
N∑
n=1

ll(w, zn = (xn, yn)) + λf(w,X1, . . . , XK) (1.3)

where ll refers to the log-likelihood, f is the regularization function, and λ
the regularization weight. Several objectives have guided our choice for the
regularization function :

1. Its sparsity, i.e. she favors the weight vectors composed of as much null
components as possible. The Lp norm functions are usually employed with
the addition of a regularization term of the form

∑k
k=1 |wk|p. All these

functions are increasing and hence favour the weight vectors with low
components. For p > 1, the norm function Lp is convex which makes the
optimization easier and renders this function attractive. However, because
of its convexity, the minimization of the regularization terme for p > 1
does not necessarily lead to variables elimination and the choice p ≤ 1
favours sparse weight vectors.

2. its ability to take into account a Ck coe�cient associated to each explica-
tive variable so that, for equivalent likelihood, the "simple" variables are
preferred to "complex" ones. By weighting the term with Lp norm by such
a coe�cient, we obtain a penalization terme of the form :

∑K
k=1 Ck ∗ |wk|p.

This coe�cient is supposed to be known upstream the optimization. If
any knowledge is available, this coe�cient is �xed to 1. It can be used to
include trade preference. In our case, this coe�cient translates the prepara-
tion cost of the variable, i.e. the discretization cost for a numerical variable
and the grouping cost for a categorical variable respectively described in
equations (2.4), resp. (2.7) of [Boullé, 2007].

3. its consistency with the regularized criterion of the MOLD naïve Bayes
classi�er with binary selection of variables [Boullé, 2007]. In order that
the two criterions coincide for λ = 1 and wk with boolean values, we
�nally use the regularization term :
f(w,X1, . . . , XK) =

∑K
k=1(logK − 1 + Ck) ∗ wpk
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1.3 Optimization algorithm : gradient descent with

mini-batches and variable neighborhood search

Let pn = P (Y = yn), pj = P (Cj), ak,n = p(xnk |yn), ak,j = p(xnk |Cj) be all
constant quantities in this optimization problem.
The regularized criterion to minimize can be written :

CRDN (w) = −
N∑
n=1

log pn +

K∑
k=1

(wk ∗ log ak,n)− log

 J∑
j=1

pj

K∏
k=1

(ak,j)
wk


+ λ

K∑
k=1

(logK − 1 + Ck) ∗ wkp

(1.4)

We optimize this criterion subject to the constraint that w takes its values in
[0, 1]K in order to obtain interpretable models. This criterion is not convex
but di�erentiable at each weight vector with partial derivative :

∂CRDN (w)

∂wγ
= −

N∑
n=1

{
log aγ,n −

∑J
j=1 pj log aγ,j

∏K
k=1 (ak,j)

wk∑J
j=1 pj

∏K
k=1 (ak,j)

wk

}
+ λ(logK − 1 + Ck) ∗ p ∗ wγp−1

(1.5)

The gradient∇CRDN (wt) is the vector of partial derivatives for γ = 1, . . . ,K.
To respect the constraint that w takes its values in [0, 1]K , we have been
interested in projected gradient descent algorithm type [Bertsekas, 1976] i.e.
a gradient descent algorithm for which, at each iteration, the obtained w
vector is projected on [0, 1]K .
Several objectives have guided our choice for the algorithmic structure :

1. online algorithm : the algorithm structure is adapted to data stream pro-
cessing and it does not need the processing of the entire base;

2. anytime algorithm : that the algorithm is interruptible and is able to return
the best optimisation given a budgeted computational time.

Within the batch gradient descent algorithm, the weight vector is updated
at each iteration t according to the gradient computed on all the instances,
and weighted by a step. If the weight vector obtained at iteration t is denoted
by wt, the update at t + 1 iteration is performed according the equation :
wt+1 = P[0,1]K [wt − ηt∇CRDN (wt)] where the η step may, according to the
variants, be a scalar constant or vary across the iterations and/or vary accord-
ing to the weight vector components. The projection on [0, 1]K just consists
in bounding obtained values in interval [0, 1]. This batch approach assumes
that all the database is available to start optimization. In its stochastic ver-
sion, the update is done by assimilation of the gradient computed on one
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Inputs : D : data stream ;
N : historical depth to evaluate the criterion ;
L : batch size used for weights update ;
w0 : initial weight vector;
η0 : initial step vector;
Max : maximal number of iterations ;
Tol : Tolerated number of successive degradations;
Outputs: w∗ = argminCRD(w) ;
ttotal = performed iterations number ;
while (Criterion improvement or less than Tol successive degradations) , and
iterations number < Max do

t : current iteration index;
Dt,L=t-th batch of size L;
Dt,N=data historical of size N including at the end of the t-th data batch;

wt+1 = P[0,1]K
(
wt − ηt 1

L
∇CRDt,L (wt)

)
;

Computation of ηt+1;

Computation of the criterion value data historical of size N : CRDt,N (wt+1) ;
if Criterion improvement then

Best value storage : w∗ = wt+1;
else

Successive degradations counter incrementation;
end

end

Algorithm 1: Projected gradient descent with mini-batches (PGDMB)

single instance. The gradient descent may turn out to be chaotic if the gradi-
ent variance from one instance to another one is high. Aiming for an online
approach, we have retained a variant mixing batch and stochastic, namely
mini-batch approach [Dekel et al., 2012] which consists in directing the de-
scent according to gradients computed on successives data batches denoted by
L. In order that descent paths are comparable when mini-batches size vary,
we used a gradient standardized to the mini-batches sizes. The projected
gradient descent with mini-batches is summarized in Algorithm 1.

The optimal value for step ηt has been the subject of several researches
leading to more or less costly algorithms. We have opted for the Rprop
method [Riedmiller and Braun, 1993] : the step computation is speci�c for
each vector component i.e. η is a step vector of dimension K, and each vector
component is multiplied by a factor which is bigger, resp. smaller than 1, if
the partial derivative sign change, resp. doesn't change from one iteration to
another. As far as the computational complexity is concerned, each iteration
needs a criterion evaluation on a sample of size N that is to say a O(K ∗N)
complexity. The classical batch algorithm is obtained for L = N and the
stochastic one for L = 1.

As the criterion to be optimized is non convex, it often shows many lo-
cal minimums towards which such a gradient descent may converge. In that
case, it is common to start several gradient descents with distinct random
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Inputs : T : total maximal number of iterations;
NeighSize: initial neighborhood size;
Inputs : (PGDMB) : D : data stream ;
N : historical depth to evaluate the criterion ;
L : batch size used for weights update ;
w0 : initial weight vector;
η0 : initial step vector ;
Max : maximal number of iterations for one PGDMB optimisation;
Tol: tolerated number of successive degradations;
Outputs: w∗ = argminCRD(w)

Initialisation of w0
1 = 0.5K ;

Initialisation w∗ = w0
1 ;

Initialisation SumT = 0;
while SumT < T do

Computation of (w∗
m, t

m
total) = PGDMB(D,N,L,w0

m, η0,Max,Tol) ;
SumT = SumT + tmtotal;
if Improvement on w∗ then

Storage of w∗ = w∗
m

else
NeighSize = min(2 ∗NeighSize, 1)

end

w0
m+1 = P[0,1]K (w∗

m +Random([−NeighSize,NeighSize]));
end

Algorithm 2: Projected gradient descent with variable neighbor search
(PGDMB-VNS)

initialisations (multi-start approach) in the hope that one of these descent
paths converges to the global minimum of the criterion. In order to make the
optimization e�cient and to not waste computational time at the beginning
of each descent, it is also possible to modify the solution obtained after a
given number of iterations in order to get out of a potential valley contain-
ing a local minimum. The current solution is regularly randomized within a
neighborhood of variable size. This randomization is inspired from the meta-
heuristic Variable Neighborhood Search [Hansen and Mladenovic, 2001]. Our
approach denoted PGDMB-VNS is described in Algorithm 2. It can be no-
ticed that, for a neighborhood that completely covers [0, 1]K , the PGDMB-
VNS algorithm is equivaleent to a multi-start algorithm with random ini-
tialisations. Besides, let precise that the random perturbation can lead to
a non-null component for a weight set to zero after a precedent run. One
variable can re-appear during the data stream reading. The PGDMB-VNS
algorithm is anytime in the sense that an estimation of the criterion argmin
is available at the end of the �rst gradient descent and that she is afterwards
improved according to the available budget and interruptible at any time. Its
entire complexity is in O(T ∗K ∗N) where T is the total number of budgeted
iterations.
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1.4 Experiments

The �rst experiments goal is to evaluate the optimization quality obtained
with PGDMB-VNS according to the mini-batches size L and to the iterations
total number T . To study the intrinsic quality regardless of the associated
classi�er statistical performance, we have set the λ weight value to 0, that
means we directly optimize the non regularized likelihood. The second part
of the experiments deals with statistical performance of classi�er obtained by
optimization of regularized criterion (λ 6= 0).
For the whole experiments, the parameters for PGDMB algorithm are set to
the following values :

• w0 = {0.5}K
• η0 = {10−2}K with a multiplication by 0.5, resp. 1.2, in case of sign change,

resp. no sign change, between two succesive gradients
• Max = 100 the iteration maximal number (i.e. the treated mini-batches

number). We have checked that this threshold had never been reached for
the 36 tested bases.

• Tol = 5 the authorized successive degradations number

Improvement criterion is considered for a decreasing of at least ε = 10−4 with
regard to the precedent criterion value. The weights smaller than 10−3 are
set to 0.

The whole experiments have been done in 10-fold-cross-validation on the
36 UCI bases described in table 1.1. In the results presentation, 'SNB'
designs performance of a Bayes classi�er averaged with compression rate
[Boullé, 2007].

1.4.1 Experiments on optimization quality

First of all, we have studied the PGDMB algorithm performance, that is to
say the projected gradient descent algorithm without post-optimisation, ac-
cording to the mini-batch size denoted L. We have chosen as optimization
quality indicator the compression rate which measures the negative logarithm
of the model likelihood, normalized by the Shannon entropy. The closer the
rate is to 1, the higher is the model likelihood. For model less competitive
than the random model, compression rate is negative. The compression rate
value on train data is then a good indicator of the optimization quality as
the non regularized criterion is reduced to the negative log-likelihood.
Figure 1.1 presents train and test compression rate averaged on 36 UCI bases
for various mini-batches sizes L = 100, 1000, N . In the last case, the choice
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Base Ni Nv Nc Base Ni Nv Nc

Abalone 4177 8 28 Mushroom 8416 22 2
Adult 48842 15 2 PenDigits 10992 16 10
Australian 690 14 2 Phoneme 2254 256 5
Breast 699 10 2 Pima 768 8 2
Bupa 345 6 2 Satimage 768 8 6
Crx 690 15 2 Segmentation 2310 19 7
Flag 194 29 8 Shuttle 58000 9 7
German 1000 24 2 SickEuthyroid 3163 25 2
Glass 214 10 6 Sonar 208 60 2
Heart 270 13 2 Soybean 376 35 19
Hepatitis 155 19 2 Spam 4307 57 2
Horsecolic 368 27 2 Thyroid 7200 21 3
Hypothyroid 3163 25 2 Tictactoe 958 9 2
Ionospehre 351 34 2 Vehicle 846 18 4
Iris 150 4 3 Waveform 5000 21 3
LED 1000 7 10 WaveformNoise 5000 40 3
LED17 10000 24 10 Wine 178 13 3
Letter 20000 16 26 Yeast 1484 9 10

Table 1.1 Description of the 36 UCI bases : Ni=instances number, Nv=initial number of
variables, Nc=class number.
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L = N amounts to a batch algorithm. Train and test compression rates
obtained with SNB MODL classi�er [Boullé, 2007] serve as a reference. Ob-
tained results indicate that, the smaller the mini-batches size is, the more
the optimization quality deteriorates. Morevover, the results obtained for
L = 1000 and L = N are very similar. The train compression rate is signi�-
cantly better for batch mode than for L = 1000 for 8 of the 36 bases.
Figure 1.2 presents as an example the criterion values serie during optimiza-
tion according to the mini-batches size L = 100, 1000, N for Phoneme base.
For the whole 36 bases, the convergence is faster but more chaotic when the
mini-batches size decreases.

We have compared the optimization quality for a PGDMB algorithm with-
out post-optimization on the one hand, and for a post-optimized PGDMB
on the other hand. Several post-optimizations have been tested : with multi-
start (PGDMB-MS) or with variable neighborhood search (PGDMB-VNS).
To get a complexity with the same order of size as that of the univariate
MODL pretreatement, that is to say O(K ∗N ∗ log (K ∗N)), we have �xed
the total number of authorized iterations T proportional to log (K ∗N). More
precisely, we have chosen T = log (K ∗N)∗2PostOptiLevel where PostOptiLevel
is an integer which enables to tune the desired post-optimization level.
For each of the two post-optimization ways, we have studied the in�uence
of the post-optimization level OptiLevel = 3, 4, 5. Since the post-optimized
algorithm stores as the best solution is encountered, the post-optimization
can only improve the train compression rate. We have measured as a �rst
step if the improvement was signi�cant or not. For a MS post-optimization,
the train compression rate is signi�cantly improved for resp. 7, 16, 18 of the
36 bases with a post-optimisation level equal resp. to 3, 4, 5. For a VNS
post-optimization, the train compression rate is signi�cantly improved for
resp. 18, 19, 23 of the 36 bases with a post-optimization level equal resp.
to 3, 4, 5. The VNS post-optimization seems then better than the MS post-
optimization : the guided exploration within a variable sized neighborhood
from the best minimum encountered enables a more fruitful exploration than
a purely random exploration.
Figure 1.3 illustrates this iterations "waste" phenomenon with MS post-
optimization at the beginning of each start.

Experiments presented in this section have illustrated the e�ect of the
mini-batches size on the optimization quality. They have also illustrated that
the higher is this size, the better the optimization quality is and that the VNS
post-optimization is superior over the MS post-optimization. We then retain
for the rest of the experiments a PGDMB-VNS algorithm with mini-batchs
size �xed to L = 1000 and an optimization level set to PostOptiLevel = 5.
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Fig. 1.3 Criterion convergence paths according to the post-optimization type for the
Phoneme base and a post-optimization level equal to 5

1.4.2 Regularized classi�er performance

We present the classi�er performance according to the setting of the regular-
ization weight λ and the p exponent of the function |wk|p. Three values have
been tested for λ = 0.01, 0.1, 0.5 and for p = 0.5, 1, 2. The performance for
AUC indicator for the nine regularized classi�ers are presented in Figure 1.4
and, taking as a reference, the performance of the non-regularized classi�er
obtained with λ = 0 and of the SNB classi�er.
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Fig. 1.4 Train and test AUC averaged for 36 UCI bases according to the weight and the
type of regularization

For the highest regularization weight, that is to say λ = 0.5 (in purple in
the Figure), the AUC performance are deteriorated with regards to the perfor-
mance obtained without regularization (red circles in the Figure) whatever
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the p value. On the other hand, for the other weight values λ = 0.01 and
λ = 0.1, the performance are similar for all p values and slightly superior or
equal on average to those of the non-regularized classi�er. These two regu-
larisation weights lead to statistical performance equivalent to those of non
regularized classi�er.
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Fig. 1.5 Kept variable number and weight sum averaged for 36 UCI bases according to
the weight and the type of regularization

Furthermore, to study the obtained classi�ers sparsity, Figure 1.5 presents
the kept variables number and their wiehgts sum. First, it shows that the
smaller p, the smaller the non-null weights number. The quadratic regular-
ization (p = 2) leads to sparser classi�ers. Among the regularization with
absolue value (p = 1) and the squared root one (p = 0.5), the second one
enables the most important reduction of the kept variables number. As far
as the weights sum is concerned, all the regularization exponent enable to re-
duce on average the weights sum. Moreover, given a λ weight, the quadratic
regularization has a less important impact on the weights sum reduction than
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the two others regularizations whose performance are very close for this in-
dicator.
Considering both aspects of statistical performance and classi�er sparsity,
the compromise p = 1 and λ = 0.1 seems the most favorable. Without de-
teriorating the non regularized classi�er performance, it enables a signi�cant
reduction of the selected variables number. This reduction makes the classi�er
more interpretable and less complex to deploy.

1.5 Conclusion

We proposed a sparse regularization of the log-likelihood for a weighted naïve
Bayes classi�er. We described and experimented a gradient descent algo-
rithm which treats online mini-batches data and optimizes the weights clas-
si�er through a more or less extensive exploration of the current optimiza-
tion depending according to the iterations budget. The experiments have
shown the interest of using mini-batches and post-optimization. Moreover,
a parametrization study of the regularization points out that the optimal
choice was a regularization term with the L1 norm and a weight λ = 0.1.
Experiments on substantially larger databases are necessary to evaluate the
approach performance on real data streams and will be the subject of future
works.
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